
 Api Pentesting
 Mindmap

 {{Attacking}}

 Broken object-level access

 Checking every function having

 User identifiers

 parameter's value

 URL object

 Downloadable resources

 PDFs

 Docs

 Invoices

 etc

 Personal docs

 National IDs

 Passports

 etc

 some web apps put the
 user's attachments names
 like their IDs in the application
 e.g: 12.pdf

 Some web apps requires uploading
 personal docs to register on them, and the
 user should have access to his docs, and
 these docs some times also named with it'
 s owner ID.

 Transaction objects / Identifiers

 Usernames

 as a value in parameters

 as an object in the URL

 Downloadable resources

 certificates

 licenses

 medical documents

 In addition to the types mentioned in the
 User identifiers section, in usernames also
 these docs might have usernames as a
 names for the files. e,g: cyberguy_10.csv

 etc {{based on application's logic}}

 Authenticators of the application Authorization headers / cookies Check for:

 Hashed sessions / cookies

 Serialized sessions / cookies

 Encoded sessions / cookies

 Encrypted cookies

 Some cookies are encrypted with
 symmetric encryption, so if you were able
 to achieve the private key by some way
 you will be able to decrypt the cookie and
 change it's value

 Some times the user's username being
 hashed and used as a value for
 authorization, you can exploit this by
 guessing the application's usernames and
 hash them

 Application's responses Dynamic application responses

 Pre-authentication

 resource accessing behaviours Manipulation Manipulate the privilege or user's state from the
 server's responses

 2FA Process to access
 specific user content

 OTP

 Leaks

 OTP stored in some endpoint

 Generated by the API using some method

 Manipulation
 Changing the values from true to false
 or it's logical representatives. e.g: {"OTP": 1} and
 number 1 here refers to true.

 Remote authorization Manipulation
 While accessing particular sensitive / critical
 resource in an application, some application
 requires remote authorization to proceed.

 etc

 Authenticated identifier's manipulate

 email

 username

 id

 confidential / personal info

 National Security Number

 Phone number

 Passport Number

 etc

 Some applications decided the identity of
 the user through the server's responses,
 we can manipulate the JSON response for
 example and the dynamic generated
 content will be loaded for the injected
 email.

 QR Code Attacks

 Pre-generation attacks Spoofable Identifiers Gradually identifiers

 Numeric identifiers e.g: /api/v1/users/getToken/12
 e.g: /api/v1/users/getToken/13

 Alphanumeric identifiers 1. e.g: /api/v1/users/getToken/username12
 2. e.g /api/v1/users/getToken/username13

 With the applications generates QR Codes
 for authentication / authorization actions,
 we can exploit these misconfigs before
 generation to decode the QR Code after
 generation then, take other users access_
 tokens for example.

 Dynamic attacks Real-time applications Response based

 Changing value in back-end will be used to
 generate QR Code later to retrieve data.
 e.g:
 {
 "username":"someUser",
 "user_id":12,
 "action":"getToken"
 }

 Changing value in back-end will be used to
 generate QR Code later to perform action.
 e.g:
 {
 "username":"someUser",
 "user_id":12,
 "action":"loginAuthorize"
 }

 etc

 etc

 Broken User Authentication

 Weak authentication security
 design

 Captcha Attacks

 Captcha reuse

 Weak captcha

 Captcha implementation
 without using

 Unauthorized access to
 captcha generation endpoint

 could be used to
 autofill captcha

 Insufficient cooldown timing allows brute-forcing attacks

 Weak credentials

 Credentials stuffing
 Leaked in public compromised databases

 OSINT based credentials on the target

 Default credentials

 High Privilege defaults

 admin:admin

 administrator:administrator

 root:toor

 etc

 Low / custom privilege defaults

 guest:guest

 test:test

 user:user

 etc

 Insecure transmission of
 sensitive data

 Sending data in GET Request / URLs

 Weak encryption mechanism

 Weak encryption keys

 Sending data in plain text

 Insecure implementation of
 authentication logic

 Response manipulation
 Manipulate server's responses to bypass the
 authentication mechanism in the dynamic
 applications.

 API Keys attacks

 Weak API keys

 Use of leaked API Keys

 Improper API rotating

 Token based attacks

 Access token attacks Improper access token validations

 Executing high privilege functions with low
 privilege access token.

 Access other user's content / data with the
 attacker's access token.

 etc

 JWT attacks

 Weak secret

 Lack of JWT verification (any token will be
 accepted)

 Weak algorithm e.g: [none] algorithm

 Signature bypass e.g: kid injection + SQL Injection

 etc.

 Timing attacks non-expiring JWTs, access tokens and sessions

 Attacking various authentication systems

 The authentication systems vary from
 application to another, so there is no standard
 method to break them, it based on your creative
 ability :)

 Excessive Data Exposure

 Profiling systems e.g: /api/clients/show?id=13

 Information retrieval systems e.g: /api/orders/show?order_id=202

 Here the (BOLA) will be a part of the
 attack to make the application's return
 sensitive info [which isn't required but the
 application retrieve it]

 Communicative systems

 Comments endpoint

 Messages endpoint

 Notifications endpoint

 etc

 Logging endpoints

 etc

 Security misconfiguration

 CORS misconfiguration

 Stack Traces e.g: ASP.NET stack trace

 Outdated systems

 Exposed storage or server management panels e.g: S3 Buckets

 etc

 Injection

 SQL Injection

 NoSQL Injection

 LDAP Injection

 OS Command Injection

 XML Injection

 etc

 Mass Assignment

 Business attack

 Price manipulation

 Amount manipulation

 Currency manipulation

 etc

 Privilege attack Privilege escalation
 e.g: {"is_admin":true}

 Deletion of resources

 Manipulating resources

 etc

 Bypass restrections

 email verification e.g: {"verified":true}

 default password enable e.g: {"default_pass":true}
 In some applications this allows the user
 to change it's password without
 restrictions / versification

 etc

 Improper assets management
 Use of non-production resources which in most
 cases not protected to attack the production
 resources

 publicly accessible productions

 env

 test

 example

 branches

 old releases

 etc

 Default endpoints which automatically enables
 with some frameworks e.g: springboot

 heapdump

 dump

 etc

 Broken function level authorization

 Administrative functions

 API Methods

 e.g:
 /api/v1/admin/delete?resource_id=
 /api/v1/admin/update?resource_id=
 /api/v1/admin/post?resource_id=

 HTTP Verbs

 DELETE

 PATCH

 PUT

 etc [based on your case]

 etc

 Improper authorizations

 Anonymous user access to functions requires
 authenticated users

 Anonymous user access to functions retrieves
 authenticated users data

 etc

 Verbs & Endpoints manipulations

 e.g:
 /api/v1/users/info?uID=1
 /api/v1/admin/users/info?uID=1

 e.g:
 /api/v1/users/?id=myID
 /api/v1/users/all

 When accessing some endpoints under
 the 'admin' endpoint, some times can
 retrieve sensitive info

 Here some applications blocks the
 integers identifiers except the current
 userID, but if you put something like: 'all'
 can retrieve the whole application's users
 info's

 Exploit endpoints for possible internal access

 e.g:
 /api/v1/Ajax/resource?url=/end/point
 /api/v1/Ajax/resource?url=../..//etc/passwd

 e.g:
 /api/v1/Ajax/resource?url=/end/point
 /api/v1/Ajax/resource?url=http://127.0.0.1

 Execute functions into internal resources
 e.g:
 /api/v1/Ajax/PUT?url=/user/profile/pic
 /api/v1/Ajax/PUT?url=http://127.0.0.1/shell.ext

 etc

 Exploiting ordinary functions trying to
 access internal resources via LFD for
 example

 Turning the normal resource grabber into
 SSRF vulnerable machine made you able
 to perform SSRF attacks and it's contexts

 Some applications the behaviors of
 deleting, adding or updating info's is
 normal, so these considered as
 vulnerabilities based on your application
 logic.

 Lack of resources and rate limiting

 OTP Endpoints

 Login Endpoints

 CVV / PIN

 Bypasses

 Internal resource spoofing

 Referer manipulation

 IP Range spoofing

 etc

 Some panels requires
 remote authorization from
 mobile apps for example, thus
 we can manipulate the response
 to bypass into the user's content.
 e.g:
 {
 "authorization_done":true,
 "resource_id": 120
 }

 Some developers defines the user's
 state when accessing a resource based on
 server's responses, for example.
 {
 "authorized":true,
 "uID": 122
 }

 some applications returns more than the
 required data, thus the attacker can
 access sensitive info's like CVV, location,
 National Security Numbers ...etc.

